Andrew Needs Help

Time limit: 0.5s **Memory limit:** 256M

Andrew is planning something and he needs your help. Andrew needs your help to determine how many permutations of the first N positive integers are good.

A permutation p is good if there exists an index i $(1 \leq i \leq N-1)$ such that $|p_{i+1}-p_i|=D$.

Since the answer might be very large, output it modulo $10^9 + 7$.

Constraints

$$2 \leq N \leq 10^6 \\ N \leq 2D < 2N$$

Subtask 1 [10%]

2 < N < 8

Subtask 2 [30%]

 $2 \le N \le 2000$

Subtask 3 [60%]

No additional constraints.

Input Specification

The first and only line contains N $(2 \le N \le 10^6)$ and D $(N \le 2D < 2N)$.

Output Specification

Output the number of good permutations, modulo $10^9 + 7$.

Sample Input 1

3 2

Sample Output 1

4

Explanation

The good permutations are $\{1,3,2\}$, $\{2,1,3\}$, $\{2,3,1\}$, and $\{3,1,2\}.$

Sample Input 2

838383 833883

Sample Output 2

711361423