
Arcadia Computing Contest 1 P4 - Cyclic Sorting

Robert likes computer science! In his computer science course, he is learning about cyclic shifts. A cyclic shift of a list is
the new list formed by moving the last element to the front, or moving the first element to the back. For example, after
performing one cyclic shift, the possible lists created from are and .

Robert strolls into his computer science classroom. Unbeknownst to him, his teacher is giving the class a pop quiz! The
quiz consists of only question:

You are given an array with length . Determine the minimum number of cyclic shifts to sort the array in non-
decreasing order.

Robert finishes the quiz in a breeze. However, he still has minutes to kill before the end of class! So, he challenges
himself to solve the same problem, but with updates. In each update, he asks himself:

If we replace with , what is the minimum number of cyclic shifts to sort the list in non-decreasing order?

For each update, output the minimum number of cyclic shifts. If it is not possible to sort the list, output -1 .

Note that updates are persistent. This means that if is changed to , during the next update, will remain equal to
.

Constraints

Subtask 1 [20%]

Subtask 2 [80%]

No additional constraints.

Input Specification

The first line will contain two space-separated integers, and .

The second line will contain space-separated integers, denoting the elements of the array .

The next lines will each contain two integers: and , denoting the parameters to the question. is one-indexed,
meaning that corresponds to the first element of the array.

Output Specification

Time limit: 3.0s Memory limit: 256M

[1, 2, 3, 4] [4, 1, 2, 3] [2, 3, 4, 1]

1

A N

40

Q

Ai x

Ai x Ai

x

1 ≤ N , Q ≤ 2 × 105

1 ≤ Ai ≤ 109

1 ≤ N , Q ≤ 1000

N Q

N A

Q i x i

i = 1

For each query, output a single integer: the minimum number of cyclic shifts to sort the array, or -1 if it is not
possible.

Sample Input

5 3
1 2 4 3 5
3 3
1 6
3 1

Sample Output

0
1
-1

Explanation for Sample

After the first update, our array becomes:

Clearly, this array is already sorted. So, we don't need any operations to sort it.

After the second update, our array becomes:

We can cycle this array one time, obtaining the array which is sorted.

After the third update, our array becomes:

Clearly, no matter how many times we cycle the array, it will remain unsorted.

{1, 2, 3, 3, 5}

{6, 2, 3, 3, 5}

{2, 3, 3, 5, 6}

{6, 2, 1, 3, 5}

