Time limit: 0.6s Java 8: 1.0s PyPy 3: 2.0s Memory limit: 256M

Fast Fingers Thomas is delivering poutine to Wilson's restaurants!

Fast Fingers Thomas will drive a truck on a weighted tree with N vertices.

Each trip has two parameters, a source vertex s_i and a destination vertex t_i . Thomas does not like driving along long edges, so he seeks to minimize the length of the second-longest edge that he travels on. Formally, if the weights of the edges that Thomas traverses are W_1, \ldots, W_K in nondecreasing order, he seeks to minimize W_{K-1} .

For each trip, compute this quantity.

Constraints

 $egin{aligned} &2 \leq N \leq 10^5 \ &1 \leq a_i, b_i \leq N \ &1 \leq w_i \leq 10^9 \ &1 \leq Q \leq 10^5 \ &1 \leq s_i, t_i \leq N \ &s_i
eq t_i \end{aligned}$

Input Specification

The first line contains a single positive integer, N.

The next N - 1 lines contain three space-separated integers, a_i , b_i , and w_i , indicating an undirected edge between a_i and b_i of weight w_i .

The next line contains a single positive integer, Q.

The next Q lines contain two space-separated positive integers, s_i and t_i , the parameters for query i.

Output Specification

Output Q lines. On the *i*th line, output the length of the second-longest edge that Thomas will take for the *i*th trip. If Thomas can travel between s_i and t_i using strictly fewer than two edges, output -1.

Sample Input

4			
122			
233			
344			
2			
1 3			
24			

Sample Output

2 3