Time limit: 0.6s Memory limit: 256M

Fast Fingers Thomas is delivering poutine to Wilson's restaurants!

Fast Fingers Thomas will drive a truck on a directed, weighted graph with N vertices. The weight of each edge in the graph is the length of the edge. He has Q trips he needs to make.

Each trip has three parameters, a source vertex s_i , a destination vertex t_i , and a number of days d_i . Thomas has d_i days to travel from vertex s_i to vertex t_i . In a given day, Thomas starts at a vertex and traverses a nonnegative number of edges, ending the day at some vertex (possibly the same one). Define $f(s_i, t_i, d_i)$ to be the smallest value such that, in a single day, the sum of the weights of the edges that Thomas drives on does not exceed $f(s_i, t_i, d_i)$, and subject to this, Thomas can get from s_i to t_i in d_i days. In the event that it's impossible to do this, Thomas does not driving and $f(s_i, t_i, d_i)$ is zero.

Constraints

 $egin{aligned} 2 &\leq N \leq 100 \ 1 &\leq Q \leq 10^5 \ 0 &\leq w_{ij} \leq 10^9 \ 1 &\leq s_i, t_i \leq N \ s_i
eq t_i \ 1 &\leq d_i < N \end{aligned}$

All queries are pairwise distinct.

Input Specification

The first line contains a single positive integer, N.

The next N lines contain N space-separated non-negative integers. The jth integer in the ith line of this section, w_{ij} , indicates the length of the directed edge connecting vertex i to vertex j, or 0 if no such edge exists. It is guaranteed there are no self-loops.

The next line contains a single positive integer, Q.

The next Q lines each contain three space-separated positive integers, s_i , t_i , and d_i , representing a query for $f(s_i, t_i, d_i)$.

Output Specification

Output Q lines. On the *i*th line, output the answer to the *i*th query.

Sample Input

3	
0 1 2	
L Ø 1	
2 1 0	
2	
1 3 1	
L 3 2	

Sample Output

2 1