Time limit: 2.0s Memory limit: 512M

It is a well-known fact that alpacas love numbers. The reason behind this fascination is uncertain, but that shouldn't be your concern at the moment. You've stumbled upon a herd of alpacas living in N connected villages, joined by N-1 bidirectional roads of length w_i .

Let us define x as the number of even length pathways between any two villages and y as the number of odd length pathways between any two villages. The length of a pathway between u_i and v_i is defined as the sum of the road lengths connecting u_i and v_i .

You look up and find yourself face to face with the queen alpaca and she's angry. She orders you to tell her the **minimum value** of |x - y| given that you can change the length of **at most** 1 road. Fail to do so and you'll be turned into an alpaca. Can you make it out alive?

Constraints

- $1 \leq N \leq 2 \cdot 10^5$
- $1 \leq w_i \leq 10^4$

 $1 \leq u_i, v_i \leq N$

Subtask 1 [10%]

 $1 \leq N \leq 200$

Subtask 2 [20%]

 $1 \leq N \leq 2 \cdot 10^3$

Subtask 3 [70%]

No additional constraints.

Input Specification

The first line of input will contain the integer N, the number of villages.

The next N-1 lines will contain the integers u_i , v_i , and w_i , representing a bidirectional road between u_i and v_i that is w_i units long.

Output Specification

Output the minimal possible value of |x - y| after modifying the length of **at most** one edge.

Note that 64-bit integers may be required.

Sample Input 1

Sample Output 1

2

Explanation for Sample Output 1

An optimal solution is **not** changing any lengths.

In the original graph, there are 6 pairs of villages which form a path of **odd** length:

- (1,2) of length 49.
- (1,3) of length 53.
- (2,4) of length 21.
- (2,5) of length 101.
- (3,4) of length 25.
- (3,5) of length 97.

Furthermore, there are 4 pairs of villages which form a path of **even** length.

- (1,4) of length 70.
- (1,5) of length 150.
- (2,3) of length 4.
- (4,5) of length 122.

Thus, the answer is |6-4|=2.

Sample Input 2

6			
6 1 100			
2 1 86			
4 3 12			
3 2 40			
5 2 44			

Sample Output 2

1